
BOINC
The Year in Review

David P. Anderson
Space Sciences Lab

U.C. Berkeley

12 Sept 2008

State of the paradigm: the good,
the bad, and the ugly

 PetaFLOPS barrier broken
− Folding@home: Sept 07
− BOINC: Jan 08

 Apps for Cell, GPU
 Mobile computing

− BOINCoid
− S@h on ARM

More good stuff

 New organizational models
 Interesting research

− VM-based apps
− Communicating apps, P2P data distribution
− simulators
− availability studies
− master/worker programming

 Active community
− support, project help, testing

The bad

 Volunteer population is stagnant
 Few new projects
 No significant PR
 Folding@home/SETI@home monopoly
 Berkeley@home not funded
 Volunteer computing still unknown to

− HPC world
− scientific computing world
− general public

The ugly

 “After 17 years, volunteer computing has yet
to make a single scientific discovery.”

Organizational models

recruitment,
deployment

app porting,
tool development

server, project
operationsproject

scientists

resources

The single-scientist model

 Dead end?

Meta-projects

 IBM World Community Grid
− solicitation of applications
− partner organizations
− corporate partication

 Campus-level (example)‏
− 1,000 instructional PCs
− 5,000 faculty/staff
− 30,000 students
− 400,000 alumni

 Center-level
− Lattice: U. Maryland Center for Bioinformatics
− LHC@home: CERN

Other models

 MindModeling.org
− ACT-R community (~20 universities)‏

 Ibercivis
− consortium of universities and labs
− separate projects but unified resources

 EDGeS (SZTAKI)‏
− hierarchical desktop grids
− EGEE@home?‏

 Almere Grid
− community computing

Software progress report: client

 Account-based sandboxing on Windows
 Weak account keys

− for mass deployment on insecure computers
 # CPUs preference is now a fraction

− prepare for 80-core CPUs

New graphics architecture

 Graphics crashes don’t affect app
 Graphics work with account-based sandboxing

BOINC client

app

BOINC manager

graphics app
unprivileged user

logged-in user

shared
mem

BOINC screensaver

BOINC Manager

 RPCs in separate thread
− GUI doesn’t block waiting for RPCs

 Combined grid/regular views
 Multiple selection

− e.g. abort 10 jobs at once

Server scheduling policy (old)‏

 Multiple passes through shared-memory array
− if “reliable” host, send retry jobs
− if beta-test user, send beta-test jobs
− send jobs already committed to host’s HR class
− send other jobs
− if no jobs yet, allow apps not selected by user

 Problems:
− fixed ordering of scans
− inefficient

Server scheduling policy (new)‏

 Score-based scheduling
− Scan at least N, at most M jobs in array
− send those with highest “score”

 Score function:
− bonus for sending beta jobs to beta users
− bonus for sending retry jobs to reliable hosts
− bonus for send HR-committed jobs
− score += expected GFLOPS

 favor sending jobs with GPU apps to hosts with GPUs
− score –= (job size – host speed)2

 favor sending large jobs to fast hosts

Other new server features
 Assigned jobs

− to a particular host
− to all hosts of a user or team
− to all hosts

 Can limit jobs by download bandwidth
 Job-size matching

− “census” computes host statistics
− feeder maintains job statistics

 Support “optional” files in validator framework

Adaptive replication

 Goal: trusted results with 1+ε replication
 Policy:

− maintain error rate E(h) of each host
− if E(h) > X, replicate (e.g., 2-fold)‏
− else replicate with probability E(h)/X

 How to use:
− workunit.target_nresults = 1
− app.target_nresults = 2

 Can this be gamed?
− need to hide jobs in progress on web

 Should use “invalid rate” instead of error rate?

Teams

 Team message boards
 Team admins
 Team membership history
 Multi-criteria team search

− keywords, country, type
 Team finding in signup process
 User search (for team recruitment)‏

− filter by country, presence of team/profile
− sort by join time, credit

Social network

 Friends
 Account page has social stuff in RH column
 Generalized notification mechanism

− sources:
 friend requests
 new PMs
 posts to subscribed threads

− delivery:
 email
 batched email
 web site
 RSS feed
 soon: BOINC Manager

Single-job submission

b o i n c _ s u b m i t – - i n fi l e X . . . p r o g r a m

 Avoids:
− template files
− validator, assimilator
− directory hierarchy
− update_versions

 But you lose:
− platform independence
− validation
− code signing

Support for multithread and
coprocessor apps
 Multithread apps: use N threads, M<N cores
 Coprocessor apps

− Cell: 6-8 SPEs
− CUDA

 Or any combination
 Old:

− Server: 1 app version per platform
− Client: 1 core per job

 New:
− Server: many app versions per platform
− Client: a job can use X cores and N instances of

each coprocessor type

Multithread/coprocessor (cont.)‏
 How to decide which app version to use?

− app versions have “plan class” string
− scheduler has project-supplied function
b o o l a p p _ p l a n (S C H E D U L E R _ R E Q U E S T & s r e q , c h a r * p l a n _ c l a s s , H O S T _ U S A G E &) ;

− returns:
 whether host can run app
 coprocessor usage
 CPU usage (possibly fractional) ‏
 expected FLOPS
 cmdline to pass to app

− embodies knowledge about sublinear speedup, etc.
 Scheduler: call app_plan() for each version, use

the one with highest expected FLOPS

Multithread/coprocessor (cont.)‏

 Client
− coprocessor handling (currently just CUDA)‏

 hardware check/report
 scheduling (coprocessors not timesliced)‏

− CPU scheduling
 run enough apps to use at least N cores

Other stuff

 Documentation
− moved user docs to MediaWiki

 BOINC project publication list
− please maintain!

 Release management
− Server stable branch
− Client: distro-specific Linux packages
− Server packages (SZTAKI)‏

Upcoming work
 Client

− break up state file
− New scheduling philosophies

 fill unused RAM, CPU, network
 heat limited computing

 API/runtime
− replace heartbeat mechanism
− replace brittle message-passing scheme

 Installer
− deal with “standby after X minutes”

 Server
− enforce file immutability
− detect need to update DB

Projects:

 BOINC is here to serve you
− if you want a feature, let us know

 Fold your changes into the trunk
 Keep server, API code up-to-date
 Develop apps for

− GPU (CUDA)‏
− Multicore (MCUDA)‏
− BOINCoid?

 Use Bossa, Bolt

Projects:
 Maintain your web site

− Science education and news
− Have a personal presence

 Retain your volunteers
− “reminder email”
− newsletters
− tell-a-friend link

 Generate publicity
− use your university’s PR office

 Think about organizational models

