CS@UH

Inter-Task Communication on
Volatile Nodes

Jaspal Subhlok

University of Houston

Intergalactic Workshop

Boinc Forum, slide 1

Big Picture -- VOLPEX: Parallel Execution on
Volatile Nodes

Communicating Parallel Programs
ON
Ordinary Desktop Volatile Nodes

Key problem : High failure rates AND coordinated
execution

Collaborators

Edgar Gabriel , Rong Zheng (UH Faculty)

Nagarjan Kanna, Troy LeBlanc, Girish N. (UH Students)
David Anderson

CS@UH BOINC 2008 slide 2

Major Challenges in VOLPEX

Failure Management
— Replication and/or Checkpointing
Programming/Communication Model
— Asynchronous PUT/GET API (Like LINDA)
— Message Passing
Execution management
— Selection of “good” nodes for execution
Integration with BOINC
Test case, examples, applications
— Real world value? Need help!

CS@UH

BOINC 2008 slide 3

Faillure Management

Replication:
— Concurrent replicas of each processes.
— Application at the speed of the fastest replicas
— Application fails only if all replicas fall
Checkpointing:
— Independent checkpoints

— Recovery from process checkpoint and
communication logs

— All processes wait during recovery
Hybrid: Checkpoint-restart to maintain degree of
replication

CS U UH BOINC 2008 slide 4

Checkpointing versus Replication

MTBF = 24 Hours

250 ‘
—— Checkpoint with restart (opt)
—O—2 Replication

200

150

Speedup

1001

501

0 100 200 300 400 500
of processors P

CS@UH BOINC 2008 slide 5

PUT/GET : “Dataspace” API
(M.S. Thesis of Nagarajan Kanna)

Asynchronous, Independent, One way, PUT/GET
transactions with an abstract dataspace (~Linda)

PUT (tag, data) place data in dataspace indexed with tag
READ (tag, data) return data matching the tag.
GET (tag, data) return and remove data matching tag.

A Powerful API
— Message passing can be implemented on this API

— And more, global variables, producer-consumer,
etc.

CS@UH BOINC 2008 slide 6

Implementation of Dataspace API

LINDA API has been implemented many many times!

Consistency in face of fault management is a major
challenge.

— Replication and checkpoint-restart imply that a logical
PUT/GET may be executed many times physically.

Consistency demands:
Additional PUTs must be ignored

All READ/GETs corresponding to the same logical call
must return the same data

SOLUTION APPROACH : Data returned for PUT/GETs is
logged. Replica calls processed from data logs

CS@UH BOINC 2008 slide 7

Dataspace API : Status and plans

Implementation of basic APl is nearly complete! What
still needs to be done:

— Testing, Validation

— Integration with BOINC

— Application development (replica exchange)
Implementation based on a dedicated datapace server

— Multiple distributed dataspace servers possible

— APl may not be ideal for direct client to client
communication

CS@UH BOINC 2008 slide 8

Volpex MPI
(Ph.D. work of Troy LeBlanc, with Prof Gabriel)

A subset MPIl implementation developed for volatile
environments

— Multiple process replicas created
— Checkpoint-restart to create replicas — not done
— Direct Client to Client communication

Approach is receivers GET (or PULL) data

On a RECV, the process contacts all possible replicas of
potential SENDers repeatedly until the data transfer is
complete.

A “Global Map” maps logical processes (MPI ranks) to
all physical processes (IP addrs) executing it.

CS@UH BOINC 2008 slide 9

{~ VolPEx - Windows Internet Explorer

6:\” - | V| | X |Live Search | B
o

© File Edit “iew Favorites Tools Help : Links ™

— »
w i [@vnlpEx l] - B
UNIVERSITY of HOUSTON
Vol P Ex f
Jl Lol Framework Nodes Refresh View Framework Controls
Downloads
Grou 'd

Current - R e I:l

Research PGH Lab Cluster Redundancy {1-3) I:l

Future Research [R Y] [Build Corfi]
Publications Volunteer PC esetvMap Ui onfig

Statisti i

sHes) L eI Upload MPI Program:

Partnerships | |[5]
Related Vork e
Biographies BasicTest{:ases:| sendirecv.c V‘
Documentation [UploadC | [UploadF |
History

Comments Upload NAS Parallel Benchmark:

|BT v| [UploadNPB |
(Start | [Abortl |
Current Server Time : 252M11:02:24

Conclusions, sort of

This work is trying to extend the class of
algorithms/applications that can employ volunteer
computing.

We need more collaboration of application folks

— Scenarios where this work will help
— Provide interesting benchmarks
— Guinea pigs for APl when it is ready

* Thanks to NSF- -~

 jaspal@uh.edu www.cs.uh.edu/~jaspal

CS@UH BOINC 2008 slide 11

mailto:jaspal@uh.edu

