
BOINC extensions
in the SZTAKI DesktopGrid system

József Kovács

smith@sztaki.hu

BOINC Workshop, Grenoble, 10/09/2008

SZTAKI Desktop Grid: BOINC project

http://szdg.lpds.sztaki.hu/szdg

SZTAKI Desktop Grid: BOINC extensions

SZTAKI Desktop Grid is a collection of various developments towards
Desktop Grid direction, based on BOINC:

• Debian package of the BOINC server

• application programming interface: DC-API

• integration with various backends: e.g: Condor

• supporting various application types on the client side: e.g.: Java, MPI

• aggregating the power of different BOINC projects: hierarchically
connected DGs

• ease the application porting under BOINC client: genwrapper

• improving security: introducing certificates in BOINC, sandboxing under
BOINC client

• generalise job creation/handling: queuemanager on BOINC server

Most of them can be downloaded from www.desktopgrid.hu, others are
under development, ⇒ desktopgrid@lpds.sztaki.hu

CancerGrid EU FP6 project

Bag of tasks: cmol3d, mopac, mdc, fmt, fma, etc.
• Fortran, C, C++
• Processing/Memory requirements
• Multi-binary applications, Libraries
• For some apps source is not available
• Config file preparation before execution
• Pure logging/debugging information

• Grid Aided Computer System For Rapid Anti-Cancer Drug Design
– January 1, 2007 – December 31, 2009
– Developing focused libraries with a high content of anti-cancer leads,

building models for predicting various molecule properties

– Developing a computer system based on grid technology, which helps to
accelerate and automate the in silico design of libraries for drug
discovery processes

DG Server
BOINC
Server

Components

BOINC
Task
DB

Sche-
duler

Data
server

Queue
Manager

D
C

-A
P

Im
as

te
r

WU

Job Database
(Description of Jobs:
Apps, Args, I/O files)

Job
descr.

gUSE
(Workflow
enactor)

gUSE DesktopGridgUSE-DG integration

Scheduling
policy

Batch
creation

gUSE
Storage

gUSE
WS

Submitter

WS-
PGRADE

(User IF)

(WF repre-
sentation)

BOINC client

GenWrapper for
batch execution

DC-API cli

Legacy
Application

BOINC client

GenWrapper for
batch execution

DC-API cli

Legacy
Application

The CancerGrid architecture

gUSE
DG Submitter

Job
descr.

gUSE
Local

Submitter

Generic Wrapper (GenWrapper)
• Why did we developed?

– The features of BOINC wrapper is not enough (e.g. patching config files
on client machines, generating extra messages, independent jobs in a
WU, etc.)

– Wanted to be prepared for unknown requirements might be raised by
future Cancergrid applications

– We did not want to extend the BOINC wrapper to make it an XML-based
programming language, we choose to BOINCify an existing language ->
Bourne shell

• How does it work?

– a shell interpreter (gitbox - a variant of busybox) is started instead of
the real application

– it executes an application script, that

• realizes boincification through script commands

• may run legacy applications in any way (e.g.: multiple input process)

• may perform any preparation on input-, output files, environment, etc.

• may do whatever you can do by a script

slot dir

Application 1Application 1

application1_1.01_windows_intelx86.zip

application1_1.01_windows_intelx86.exe

Legacy Executable 1..n (LE)Legacy Executable 1..n (LE)

GenWrapperGenWrapper

Legacy Executable DependenciesLegacy Executable Dependencies

Profile ScriptProfile Script

WorkunitWorkunit

Input Files

Application Script

1. unzips %BASENAME%.zip to slot dir
2. executes dc_init() or boinc_init() [

and dc_finish() or boinc_finish() at
the end]

3. creates a script that:
• sources the Profile Script
• starts the Application Script

4. starts GenWrapper

1. unzips %BASENAME%.zip to slot dir
2. executes dc_init() or boinc_init() [

and dc_finish() or boinc_finish() at
the end]

3. creates a script that:
• sources the Profile Script
• starts the Application Script

4. starts GenWrapper

command line parameterscommand line parameters

Output Files

• architecture independent tasks
• handles batch-run
• prepares Input Files for LE(s)
• executes LE(s)
• moves Output Files to predefined

location
6. exit status becomes the exit status of

the WU

• architecture independent tasks
• handles batch-run
• prepares Input Files for LE(s)
• executes LE(s)
• moves Output Files to predefined

location
6. exit status becomes the exit status of

the WU

5. executes the generated script
• compound BOINC application

5. executes the generated script
• compound BOINC application

uncompress

• handles architecture/ platform
dependent pre-run tasks for the
application

• handles architecture/ platform
dependent pre-run tasks for the
application

Sample GenWrapper Script

1. IN=` boinc resolve_filename in`

2. OUT=` boinc resolve_filename out`

3. NUM=`cat ${IN}`

4. PERCENT_PER_ITER=$((100000 / NUM))

5. for i in `seq $NUM`; do

6. PERCENT_COMPLETE=$((PERCENT_PER_ITER * i / 1000))

7. boinc fraction_done_percent ${PERCENT_COMPLETE}

8. echo -e "I am ${PERCENT_COMPLETE}% complete." >> ${OUT}

9. sleep 1;

10.done

• shell script contains the BOINC commands

• every filename needs to be resolved

• status: on-going development, still missing some features
(CPU time calculation, signal handling, background
process, checkpointing, etc.)

Integration of the web-portal to DG

Queue
Manager

Job Database
(Description of Jobs:
Apps, Args, I/O files)

Scheduling
policy

source
plug-in

destination
plug-in

BOINC
plug-in

D
C

-A
P

Im
as

te
r

B
at

ch
 c

re
at

io
n

WS-PGRADE/
gUSE web
based portal
plugin

BOINC

WS-
PGRADE/
gUSE

Batching in QM

• Substrings like “%{<word>} ” are substituted with the
appropriate value. Unknown substitutions are left alone and
copied as-is

• 3 template scripts must be prepared for every app
• Head template: extracts %{inputs}

• Per-job templates:
– All input files are under %{input_dir} (relative to the directory

where the script is started) �
• Moves the input files to appropriate location if necessary

– Calls “application %{args} ”

– Moves all output files to %{output_dir} (relative to the
directory where the script is started) �

• Tail template: packs the directory %{output_dir} as
%{outputs}

Example templates

• Example head template:
set +e

tar xzf %{inputs}

BASEDIR=`pwd`

• Example per-job template:
cd $BASEDIR/%{input_dir}

$BASEDIR/app %{args} >stdout 2>stderr

mv out_file stdout stderr $BASEDIR/%{output_dir}

cd –

• Example tail template:
cd $BASEDIR/outputs

tar czf $BASEDIR/%{outputs} *

The CancerGrid portal (gUSE & SZTAKI DG)

Workflow
development &
configuration

Algorithms
configuration

Workflow
execution

Molecule
database
browser

Integrated
components of
CancerGrid portal

Conclusion

• Any community that has a class of workflow type
applications requiring bag of task type of components can
easily use a BOINC system:
– the community can create its own non-public BOINC project

– can easily map the bag of task components into BOINC
applications

– can easily combine these components into more complex
workflow applications

• Such a system
– has been prototyped for the Cancer Research community within

the CancerGrid projects

– will be available as production system in Q4 of 2008

• Within the EDGeS project we would like to support other
communities with this technology

If you need more detailed (technical) information,
email to desktopgrid@lpds.sztaki.hu or

visit www.desktopgrid.hu

Thank you for your attention!

Questions?

Acknowledgement:
CancerGrid EU FP6 project (FP6-2005-LIFESCTHTALTH-7)

http://www.cancergrid.eu

