Volunteer Computing in the Clouds Artur Andrzejak¹, <u>Derrick Kondo²</u>, Sangho Yi² Zuse Institute Berlin, but now at Institute for Infocomm Research (I2R), Singapore ²INRIA Grenoble, France ### Trade-offs ### Market-based Resource Allocation Systems - Amazon Spot Instances - "Spot" instance price varies dynamically - Spot instance provided when user's bid is greater than current price - Spot instance terminated when user's bid ≤ current price - Amazon charges by the last price at each hour #### Synthetic Example: #### Real Amazon Price Trace: ## Optimization Problem - Given job with batch of parallel, independent, divisible tasks - Deadline and budget constraints - Objectives - Can the job be executed under budget and deadline constraints? - What is the bid price and instance type that minimizes the total monetary costs? - What is the distribution of monetary costs and execution times for a specific instance type and bid price? ## Goal and Approach - Formulate and show how to apply user decision model - Characterize relationship between job execution time, monetary cost, reliability, bid price - Compare costs of different instance types #### Outline - System model - Decision model - Simulations method and results - Relation with BOINC - Conclusion & Future work #### User Parameters and Constraints | Notation | Description | |--|--| | $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | number of instances that process the work in parallel | | $\overline{n_{max}}$ | upper bound on n_{inst} | | \overline{W} | total amount of work in the user's job | | $\overline{W_{inst}}$ | workload per instance (W/n_{inst}) | | \overline{T} | task length, time to process W_{inst} on a specific instance | | \overline{B} | budget per instance | | $\overline{c_B}$ | user's desired confidence in meeting budget B | | $\overline{t_{dead}}$ | deadline on the user's job | | $\overline{c_{dead}}$ | desired confidence in meeting job's deadline | | $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | user's bid on a Spot Instance type | | I_{type} | EC2 instance type | Job parametersJob constraintsUser decision variables #### Random Variables of Model | Notation | Description | |-----------------|--| | \overline{ET} | execution time of the job (clock time) | | \overline{AT} | availability time (total time in-bid) | | \overline{EP} | expected price, i.e. (cost per instance)/ AT | | M | monetary cost $AT \cdot EP$ per instance | | AR | availability ratio AT/ET | | UR | utilization ratio T/ET | reliability monetary cost ## Execution Model Example $$T = 6h$$ $ET = 10h$ $AT = 5+3 = 8h$ $EP = 1.4/8 = 0.175 USD/h 9$ $$M = 3*0.1+4*0.2+1*0.3$$ $$= 1.4 \text{ USD}$$ $$AR = 8/10 = 0.8$$ $$UR = 6/10 = 0.6$$ #### Decision Workflow #### Decision Model - For a random variable, X, we write X(y) for x s.t. Pr (X < x) = y. - E.g. ET(0.50) is the median execution time - Feasibility decisions - Deadline constraint achievable with confidence $c_{dead} \Leftrightarrow t_{dead} \geq ET(c_{dead})$ - Budget constraint achievable with confidence $c_B \Leftrightarrow B \geq M(c_B)$ - Among the feasible cases, we choose the one with the smallest $M(c_B)$ or lowest execution time $ET(c_{dead})$ #### Outline - System model - Decision model - Simulations method and results - Relation with BOINC - Conclusion & Future work #### Simulation Method - Determine distributions of model variables via price trace-driven simulation - Prices: trace of Spot instance prices obtained from Amazon - Workload model - W1: "Big", based on Volunteer Computing, parameters derived from BOINC catalog - W2: "Small", based on Grids, parameters derived from the Grid Workload Archive | Workload | I_{type} | n_{max} | W_{inst} | T | t_{dead} | c_{dead} | |----------|------------|-----------|------------|------|------------|------------| | W1 | 2.5GHz | 20,000 | 11.5 | 4.6h | 9d | 0.9 | | W2 | 2.5GHz | 50 | 6.83 | 2.7h | 17.9h | 0.8 | # Distribution of Execution Time and Costs (Instance Type A and Workload WI) (b) when task length T = 276 minutes #### Relation to BOINC? - Amazon does not provide any middleware for Spot instances - BOINC is ideal as it handles nondeterministic failures, and ongoing work with VM integration would allow transparent checkpointing - Use BOINC with decision model to be costaware - Cloud-enabled BOINC client or server? - Integrate with volunteers on the Internet, Grids etc? 15 #### Why not just use Internet volunteers? - Reliability of Spot Instances is tunable (at a cost) - Greater inter-node connectivity + higher bandwidth - ~I Gbit among EC2 instances*. - ~100Mbit down/55Mbit up between EC2 and S3* - Scientific data can be hosted on Amazon for free $^{* \ \}underline{\text{http://blog.rightscale.com/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-ec2-and-$ ## Hybrid Use Case - Scientist submit 10,000 jobs - Last 7%* are stragglers and delay job completion - Run last 700 jobs on Amazon Spot Instances in parallel all at once - Spot instance cost: ~\$210 ± \$20 - Could be cheaper if use reliable host mechanism - Tune reliability according to budget and time constraints of user # Implementation Approach* - Distinguish BOINC cloud nodes - Create accounts with special id - Schedule on cloud nodes - Use matchmaking function is _wu_feasible_custom? - Prioritize work units later in batch - Use feeder to prioritize by result_id or priority ^{*}Thanks to David Anderson ## Discussion Questions - Would application scientists use hybrid volunteer computing / cloud platforms? - Accounting model? - Would volunteers use cloud platforms? - Would hybrid system allow for new types of applications in terms of data intensity or message passing? ## Plug - EU project - European Desktop grid Initiative (EDGI) - Open 2-year post-doc in Lyon ## Thank you