
Volunteer Computing
in the Clouds

Artur Andrzejak1, Derrick Kondo2, Sangho Yi2

1Zuse Institute Berlin,
but now at Institute for

Infocomm Research (I2R),
Singapore

2INRIA Grenoble, France

1

Trade-offs

Supercomputers

Performance

Reliability

Cost ($)

low

high

high

high

high

Clusters

Cloud

Computing

Volunteer
Computing

2

Market-based Resource
Allocation Systems

• Amazon Spot Instances

• “Spot” instance price varies
dynamically

• Spot instance provided when
user’s bid is greater than current
price

• Spot instance terminated when
user’s bid ≤ current price

• Amazon charges by the last price
at each hour

Price

0.2

0.3

0.4
Bid

availability (5) availability (3)
failure (2)

useful computation (4)
useful
comp. (2)

chpt (1) restart (1)

M = 3*0.1+4*0.2+1*0.3
= 1.4 USD

AR = 8/10 = 0.8
UR = 6/10 = 0.6

T = 6h
ET = 10h
AT = 5+3 = 8h
EP = 1.4/8 = 0.175 USD/h

Time (hour)
0 1 2 3 4 5 6 7 8 9 10

0.1

Figure 2. Illustration of the execution model and computation of the random
variables (RVs)

parallel and independent bags of tasks. By far, the majority
of workloads in Desktop Grids consist of compute-intensive
and independent tasks. Desktop Grids resemble Spot Instances
in the sense that a desktop user can reclaim his/her machine
at any time, preempting the executing application. As such,
we believe these workloads are representative of applications
amenable or actually deployed across Spot Instances.

The Grid and Desktop Grid workload parameters corre-
spond to relatively small and relatively large jobs respectively.
This is partly because Grids have on the order of hundreds to
thousands or resources, and Desktop Grids have on the order
of tens to hundreds of thousands of resources. So the workload
size is reflective of the platform size.

The specific Grid and Desktop Grid workload parameters
that we use are based the BOINC Catalog [8] (Workload
W1), and Grid Workload Archive [9], [10] (Workload W2),
respectively (Table II).

Workload W1. In the BOINC Catalog [8], we find that the
median job deadline tdead is 9 days, and the mean task length
T is 4.6 hours (276 minutes) on a 2.5GHz core. This translates
to a mean per-instance workload Winst of 11.5 unit-hours. We
will assume in the following an instance type with 2.5 EC2
Compute Units (e.g. a single core of the High-CPU medium
instance type) [3] so that the task lengths remain around the
original values. We also learned that a typical value for nmax

is 20,000 tasks. Thus, we center the range of W , tdead, Winst

(or equivalently, of T) around these values. See Table II for
these and additional parameters.

Workload W2. From the Grid Workloads Archive [9], [10],
we find that the mean job deadline tdead is 1074 minutes
(17.9 hours), and the mean task length T is 164 minutes
(2.7 hours) on a 2.5GHz core. This gives us an average per-
instance workload Winst of 6.75 unit-hours. nmax is 50 tasks,
the highest average reported in [10]. We will again assume in

Table III
RANDOM VARIABLES (RVS) USED FOR MODELING

Notation Description
ET execution time of the job (clock time)
AT availability time (total time in-bid)
EP expected price, i.e. (cost per instance)/AT
M monetary cost AT · EP per instance
AR availability ratio AT/ET
UR utilization ratio T/ET

the following an instance type with 2.5 EC2 Compute Units
for a single core. This let us center our study around the values
of T and tdead as reported in the third row of Table II.

III. MODELING AND OPTIMIZATION APPROACH

A. Execution Scenario
Figure 2 illustrates an exemplary execution scenario. A user

submits a job with a total amount of work W of 12 unit-
hours with ninst = 2 which translates to a Winst = 6 unit-
hours and the task time (per instance) T of 6 hours (assuming
EC2’s “small instance” server). User’s bid price ub is 0.30
USD, and during the course of the job’s computation, the job
encounters a failure (i.e. an out-of-bid situation) between time
5 and 7. The total availability time was 8 hours, from which
the job has (4+2) = 6 hours of useful computation, and uses
1 hour for checkpointing and 1 hour for restart. (Obviously,
these overheads are unrealistic, but defined here for simplicity
of the example.) The clock time needed until finishing was
10 hours. During the job’s active execution, the spot price
fluctuates; there are 3 hours at 0.10 per time unit, 4 hours at
0.20 per time unit, and 1 time unit at 0.30 per time unit, giving
a total cost of 1.40. Thus the expected price is 1.40/8 = 0.175
(USD / hour).

B. Modeling of the Execution
The execution is modeled by the following random variables

(RVs):
• execution time ET is the total clock time needed to

process Winst on a given instance (or, equivalently, to
give the user T hours of useful computation on this
instance); in the example, ET assumes the value of 10
hours

• availability time AT is the total time in-bid; in our
example, this is 8 hours

• expected price EP is the total amount paid for this
instance to perform Winst divided by the total availability
time; note that always EP ≤ ub

• monetary cost M is the amount to be payed by the user
per instance, defined by M = AT · EP ; in the example,
we have (in USD) M = 8 · 0.175 = 1.40.

Note that as we assume ninst instances of the same type,
they all are simultaneously in-bid and out-of-bid; therefore,
the values of the variables ET , AT , EP are identical for
all instances deployed in parallel. In particular, the whole
job completes after time ET , and so ET is also the job’s
execution time. Furthermore, all the above RVs depend on

Reducing Costs of Spot Instances via Checkpointing

in the Amazon Elastic Compute Cloud

Sangho Yi and Derrick Kondo

INRIA Grenoble Rhône-Alpes, France
{sangho.yi, derrick.kondo}@inrialpes.fr

Artur Andrzejak

Zuse Institute Berlin (ZIB), Germany
andrzejak@zib.de

Abstract—Recently introduced spot instances in the Amazon
Elastic Compute Cloud (EC2) offer lower resource costs in
exchange for reduced reliability; these instances can be revoked
abruptly due to price and demand fluctuations. Mechanisms
and tools that deal with the cost-reliability trade-offs under
this schema are of great value for users seeking to lessen their
costs while maintaining high reliability. We study how one such
a mechanism, namely checkpointing, can be used to minimize
the cost and volatility of resource provisioning. Based on the
real price history of EC2 spot instances, we compare several
adaptive checkpointing schemes in terms of monetary costs and
improvement of job completion times. Trace-based simulations
show that our approach can reduce significantly both price and
the task completion times.

I. INTRODUCTION

The vision of computing as a utility has reached new heights

with the recent advent of Cloud Computing. Compute and

storage resources can be allocated and deallocated almost

instantaneously and transparently on an as-need basis.

Pricing of these resources also resembles a utility, and

resources prices can differ in at least two ways. First prices can

differ by vendor. The growing number of Cloud Computing

vendors has created a diverse market with different pricing

models for cost-cutting, resource-hungry users.

Second, prices can differ dynamically (as frequently as

an hourly basis) based on current demand and supply. In

December 2009, Amazon released spot instances, which sell

the spare capacity of their data centers. Their dynamic pricing

model is based on bids by users. If the users’ bid price is

above the current spot instance price, their resource request

is allocated. If at any time the current price is above the bid

price, the request is terminated. Clearly, there is a trade-off

between the cost of the instance and its reliability.

The current middleware run on top of these infrastructures

cannot cope or leverage changes in pricing or reliability.

Ideally, the middleware would have mechanisms to seek by

itself the cheapest source of computing power given the

demands of the application and current pricing.

In this paper, we investigate one mechanism, namely check-

pointing, that can be used to achieve the goal of minimizing

monetary costs while maximizing reliability. Using real price

traces of Amazon’s spot instances, we study various dynamic

checkpointing strategies that can adapt to the current instance

price and show their benefit compared to static, cost-ignorant

strategies. Our key result is that the dynamic checkpointing

strategies significantly reduce the monetary cost, while im-

proving reliability.

The remainder of this paper is organized as follows. Sec-

tion II presents checkpointing strategies on spot instances in

the Amazon Elastic Compute Cloud (EC2). Section III eval-

uates performance of several checkpointing strategies based

on the previous price history of the spot instances. Section IV

describes related work. Finally, Section V presents conclusions

and possible extensions of this work.

II. SPOT INSTANCES ON AMAZON EC2

In this section we describe the system model used in this

paper and introduce the considered checkpointing schemes.

A. System Model

Figure 1. Spot price fluctuations of eu-west-1.linux instance types

Amazon allows users to bid on unused EC2 capacity pro-

vided as 42 types of spot instances that differ by computing

/ memory capacity, OS type and geographical location [1].

Their prices called spot prices change dynamically based on

supply and demand. Figure 1 shows examples of spot price

fluctuations for three eu-west-1.linux instance types during 8
days in January 2010. Customers whose bids meet or exceed

the current spot price gain access to the requested resources.

Figure 2 shows how Amazon EC2 charges per-hour price

cloudexchange.org [tim lossen]

Synthetic Example:

Real Amazon Price Trace:

3

Optimization Problem
• Given job with batch of parallel, independent,

divisible tasks

• Deadline and budget constraints

• Objectives

• Can the job be executed under budget and
deadline constraints?

• What is the bid price and instance type that
minimizes the total monetary costs?

• What is the distribution of monetary costs
and execution times for a specific instance
type and bid price?

4

Goal and Approach

• Formulate and show how to apply user
decision model

• Characterize relationship between job
execution time, monetary cost, reliability,
bid price

• Compare costs of different instance types

5

Outline

• System model

• Decision model

• Simulations method and results

• Relation with BOINC

• Conclusion & Future work

6

User Parameters and ConstraintsTable I
USER PARAMETERS AND CONSTRAINTS

Notation Description
ninst number of instances that process the work in parallel
nmax upper bound on ninst

W total amount of work in the user’s job
Winst workload per instance (W/ninst)

T task length, time to process Winst on a specific instance
B budget per instance
cB user’s desired confidence in meeting budget B

tdead deadline on the user’s job
cdead desired confidence in meeting job’s deadline

ub user’s bid on a Spot Instance type
Itype EC2 instance type

Note that there is a potential exploitation method to reduce
the cost of the last partial hour of work called "Delayed
Termination" [6]. In this scenario, a user waits after finished
computation almost to the next hour-boundary for a possible
termination due to an out-of-bid situation. This potentially
prevents a payment for the computation in the last partial hour.

0.075

0.08

0.085

Price for eu−west−1.linux.c1.medium (11−18 March, 2010)

0.15

0.155

0.16

0.165

0.17

Price for eu−west−1.linux.m1.large (11−18 March, 2010)

0.038

0.039

0.04

0.041

0.042

Price for eu−west−1.linux.m1.small (11−18 March, 2010)

Figure 1. Price history for some Spot Instance types (in USD per hour;
geographic zone eu-west; operating system Linux/UNIX)

B. Workloads and SLA Constraints

We assume a user is submitting a compute-intensive, em-
barrassingly parallel job that is divisible. Divisible workloads,
such video encoding and biological sequence search (BLAST,
for example), are an important class of application prevalent
in high-performance parallel computing [7]. We believe this
is a common type of application that could be submitted on
EC2 and amenable to failure-prone Spot Instances.

The job consists of a total amount of work W to be
executed by ninst many instances (of the same type) in
parallel, which yields Winst = W/ninst, the workload per

Table II
PARAMETERS OF THE EXEMPLARY WORKLOADS

Workload Itype nmax Winst T tdead cdead

W1 2.5GHz 20, 000 11.5 4.6h 9d 0.9
W2 2.5GHz 50 6.83 2.7h 17.9h 0.8

instance. Note that ninst can be usually varied up to a certain
limit given by the number nmax of “atomic” tasks in the
job; thus, ninst ≤ nmax. We measure W and Winst in
hours of computation needed on a single EC2 instance with
processing capacity of one EC2 Compute Unit (or simply
unit), i.e. equivalent CPU capacity of a 1 . . . 1.2 GHz 2007
Opteron or 2007 Xeon processor [4]. We refer to amount of
work done in one hour on a machine with one EC2 Compute
Unit as unit-hour. We call the time needed for processing
Winst on a specific instance type Itype the task length T =
T (Itype). Simplifying slightly, we assume the perfect relation-
ship T (Itype) = Winst/(processing capacity of Itype). Note
that T is the “net” computation time excluding any overheads
due to resource unavailability, checkpointing and recovery.
This is different than the actual clock time needed to process
Winst(called execution time, see Section III-A), which is at
least T .

Further constraints which might be specified as part of user’s
input are:

• budget B, upper bound on the total monetary cost per
instance

• cB : user’s desired confidence in meeting this budget
• deadline tdead, upper bound on the execution time (clock

time needed to process Winst)
• cdead: the desired confidence in meeting tdead.

Table I lists the introduced symbols.

C. Optimization Objectives

We assume that a user is primarily interested in answering
the following questions:

Q1. Can the job be executed under specified budget and
deadline constraints?

Q2. What is the bid price and instance type that mini-
mizes the total monetary costs?

Q3. What is the distribution of the monetary cost and the
execution time for a specific instance type and bid
price?

To simplify our approach, we assume that the instance type
and the bid price are fixed, and focus on answering Q3. In
order to answer Q1 and Q2, one needs just to evaluate a
small number of relevant combinations of instance types and
bid prices (see Section IV-E). The user can also apply this
approach dynamically, i.e. periodically re-optimize the bid and
instance type selection during the computation, depending on
the execution progress and changes in spot prices.

D. Exemplary Workloads

To emulate real applications, we base the input workload
on that observed in real Grids and Desktop Grids. The ma-
jority of workloads in traditional Grids consist of pleasantly

User decision variables

Job parameters
Job constraints

7

Random Variables of Model

Price

0.2

0.3

0.4
Bid

availability (5) availability (3)
failure (2)

useful computation (4)
useful
comp. (2)

chpt (1) restart (1)

M = 3*0.1+4*0.2+1*0.3
= 1.4 USD

AR = 8/10 = 0.8
UR = 6/10 = 0.6

T = 6h
ET = 10h
AT = 5+3 = 8h
EP = 1.4/8 = 0.175 USD/h

Time (hour)
0 1 2 3 4 5 6 7 8 9 10

0.1

Figure 2. Illustration of the execution model and computation of the random
variables (RVs)

parallel and independent bags of tasks. By far, the majority
of workloads in Desktop Grids consist of compute-intensive
and independent tasks. Desktop Grids resemble Spot Instances
in the sense that a desktop user can reclaim his/her machine
at any time, preempting the executing application. As such,
we believe these workloads are representative of applications
amenable or actually deployed across Spot Instances.

The Grid and Desktop Grid workload parameters corre-
spond to relatively small and relatively large jobs respectively.
This is partly because Grids have on the order of hundreds to
thousands or resources, and Desktop Grids have on the order
of tens to hundreds of thousands of resources. So the workload
size is reflective of the platform size.

The specific Grid and Desktop Grid workload parameters
that we use are based the BOINC Catalog [8] (Workload
W1), and Grid Workload Archive [9], [10] (Workload W2),
respectively (Table II).

Workload W1. In the BOINC Catalog [8], we find that the
median job deadline tdead is 9 days, and the mean task length
T is 4.6 hours (276 minutes) on a 2.5GHz core. This translates
to a mean per-instance workload Winst of 11.5 unit-hours. We
will assume in the following an instance type with 2.5 EC2
Compute Units (e.g. a single core of the High-CPU medium
instance type) [3] so that the task lengths remain around the
original values. We also learned that a typical value for nmax

is 20,000 tasks. Thus, we center the range of W , tdead, Winst

(or equivalently, of T) around these values. See Table II for
these and additional parameters.

Workload W2. From the Grid Workloads Archive [9], [10],
we find that the mean job deadline tdead is 1074 minutes
(17.9 hours), and the mean task length T is 164 minutes
(2.7 hours) on a 2.5GHz core. This gives us an average per-
instance workload Winst of 6.75 unit-hours. nmax is 50 tasks,
the highest average reported in [10]. We will again assume in

Table III
RANDOM VARIABLES (RVS) USED FOR MODELING

Notation Description
ET execution time of the job (clock time)
AT availability time (total time in-bid)
EP expected price, i.e. (cost per instance)/AT
M monetary cost AT · EP per instance
AR availability ratio AT/ET
UR utilization ratio T/ET

the following an instance type with 2.5 EC2 Compute Units
for a single core. This let us center our study around the values
of T and tdead as reported in the third row of Table II.

III. MODELING AND OPTIMIZATION APPROACH

A. Execution Scenario
Figure 2 illustrates an exemplary execution scenario. A user

submits a job with a total amount of work W of 12 unit-
hours with ninst = 2 which translates to a Winst = 6 unit-
hours and the task time (per instance) T of 6 hours (assuming
EC2’s “small instance” server). User’s bid price ub is 0.30
USD, and during the course of the job’s computation, the job
encounters a failure (i.e. an out-of-bid situation) between time
5 and 7. The total availability time was 8 hours, from which
the job has (4+2) = 6 hours of useful computation, and uses
1 hour for checkpointing and 1 hour for restart. (Obviously,
these overheads are unrealistic, but defined here for simplicity
of the example.) The clock time needed until finishing was
10 hours. During the job’s active execution, the spot price
fluctuates; there are 3 hours at 0.10 per time unit, 4 hours at
0.20 per time unit, and 1 time unit at 0.30 per time unit, giving
a total cost of 1.40. Thus the expected price is 1.40/8 = 0.175
(USD / hour).

B. Modeling of the Execution
The execution is modeled by the following random variables

(RVs):
• execution time ET is the total clock time needed to

process Winst on a given instance (or, equivalently, to
give the user T hours of useful computation on this
instance); in the example, ET assumes the value of 10
hours

• availability time AT is the total time in-bid; in our
example, this is 8 hours

• expected price EP is the total amount paid for this
instance to perform Winst divided by the total availability
time; note that always EP ≤ ub

• monetary cost M is the amount to be payed by the user
per instance, defined by M = AT · EP ; in the example,
we have (in USD) M = 8 · 0.175 = 1.40.

Note that as we assume ninst instances of the same type,
they all are simultaneously in-bid and out-of-bid; therefore,
the values of the variables ET , AT , EP are identical for
all instances deployed in parallel. In particular, the whole
job completes after time ET , and so ET is also the job’s
execution time. Furthermore, all the above RVs depend on

reliability
performance

monetary cost
8

Price

0.2

0.3

0.4
Bid

availability (5) availability (3)
failure (2)

useful computation (4)
useful
comp. (2)

chpt (1) restart (1)

M = 3*0.1+4*0.2+1*0.3
= 1.4 USD

AR = 8/10 = 0.8
UR = 6/10 = 0.6

T = 6h
ET = 10h
AT = 5+3 = 8h
EP = 1.4/8 = 0.175 USD/h

Time (hour)
0 1 2 3 4 5 6 7 8 9 10

0.1

Figure 2. Illustration of the execution model and computation of the random
variables (RVs)

parallel and independent bags of tasks. By far, the majority
of workloads in Desktop Grids consist of compute-intensive
and independent tasks. Desktop Grids resemble Spot Instances
in the sense that a desktop user can reclaim his/her machine
at any time, preempting the executing application. As such,
we believe these workloads are representative of applications
amenable or actually deployed across Spot Instances.

The Grid and Desktop Grid workload parameters corre-
spond to relatively small and relatively large jobs respectively.
This is partly because Grids have on the order of hundreds to
thousands or resources, and Desktop Grids have on the order
of tens to hundreds of thousands of resources. So the workload
size is reflective of the platform size.

The specific Grid and Desktop Grid workload parameters
that we use are based the BOINC Catalog [8] (Workload
W1), and Grid Workload Archive [9], [10] (Workload W2),
respectively (Table II).

Workload W1. In the BOINC Catalog [8], we find that the
median job deadline tdead is 9 days, and the mean task length
T is 4.6 hours (276 minutes) on a 2.5GHz core. This translates
to a mean per-instance workload Winst of 11.5 unit-hours. We
will assume in the following an instance type with 2.5 EC2
Compute Units (e.g. a single core of the High-CPU medium
instance type) [3] so that the task lengths remain around the
original values. We also learned that a typical value for nmax

is 20,000 tasks. Thus, we center the range of W , tdead, Winst

(or equivalently, of T) around these values. See Table II for
these and additional parameters.

Workload W2. From the Grid Workloads Archive [9], [10],
we find that the mean job deadline tdead is 1074 minutes
(17.9 hours), and the mean task length T is 164 minutes
(2.7 hours) on a 2.5GHz core. This gives us an average per-
instance workload Winst of 6.75 unit-hours. nmax is 50 tasks,
the highest average reported in [10]. We will again assume in

Table III
RANDOM VARIABLES (RVS) USED FOR MODELING

Notation Description
ET execution time of the job (clock time)
AT availability time (total time in-bid)
EP expected price, i.e. (cost per instance)/AT
M monetary cost AT · EP per instance
AR availability ratio AT/ET
UR utilization ratio T/ET

the following an instance type with 2.5 EC2 Compute Units
for a single core. This let us center our study around the values
of T and tdead as reported in the third row of Table II.

III. MODELING AND OPTIMIZATION APPROACH

A. Execution Scenario
Figure 2 illustrates an exemplary execution scenario. A user

submits a job with a total amount of work W of 12 unit-
hours with ninst = 2 which translates to a Winst = 6 unit-
hours and the task time (per instance) T of 6 hours (assuming
EC2’s “small instance” server). User’s bid price ub is 0.30
USD, and during the course of the job’s computation, the job
encounters a failure (i.e. an out-of-bid situation) between time
5 and 7. The total availability time was 8 hours, from which
the job has (4+2) = 6 hours of useful computation, and uses
1 hour for checkpointing and 1 hour for restart. (Obviously,
these overheads are unrealistic, but defined here for simplicity
of the example.) The clock time needed until finishing was
10 hours. During the job’s active execution, the spot price
fluctuates; there are 3 hours at 0.10 per time unit, 4 hours at
0.20 per time unit, and 1 time unit at 0.30 per time unit, giving
a total cost of 1.40. Thus the expected price is 1.40/8 = 0.175
(USD / hour).

B. Modeling of the Execution
The execution is modeled by the following random variables

(RVs):
• execution time ET is the total clock time needed to

process Winst on a given instance (or, equivalently, to
give the user T hours of useful computation on this
instance); in the example, ET assumes the value of 10
hours

• availability time AT is the total time in-bid; in our
example, this is 8 hours

• expected price EP is the total amount paid for this
instance to perform Winst divided by the total availability
time; note that always EP ≤ ub

• monetary cost M is the amount to be payed by the user
per instance, defined by M = AT · EP ; in the example,
we have (in USD) M = 8 · 0.175 = 1.40.

Note that as we assume ninst instances of the same type,
they all are simultaneously in-bid and out-of-bid; therefore,
the values of the variables ET , AT , EP are identical for
all instances deployed in parallel. In particular, the whole
job completes after time ET , and so ET is also the job’s
execution time. Furthermore, all the above RVs depend on

Execution Model Example

Price

0.2

0.3

0.4
Bid

availability (5) availability (3)
failure (2)

useful computation (4)
useful
comp. (2)

chpt (1) restart (1)

M = 3*0.1+4*0.2+1*0.3
= 1.4 USD

AR = 8/10 = 0.8
UR = 6/10 = 0.6

T = 6h
ET = 10h
AT = 5+3 = 8h
EP = 1.4/8 = 0.175 USD/h

Time (hour)
0 1 2 3 4 5 6 7 8 9 10

0.1

Figure 2. Illustration of the execution model and computation of the random
variables (RVs)

parallel and independent bags of tasks. By far, the majority
of workloads in Desktop Grids consist of compute-intensive
and independent tasks. Desktop Grids resemble Spot Instances
in the sense that a desktop user can reclaim his/her machine
at any time, preempting the executing application. As such,
we believe these workloads are representative of applications
amenable or actually deployed across Spot Instances.

The Grid and Desktop Grid workload parameters corre-
spond to relatively small and relatively large jobs respectively.
This is partly because Grids have on the order of hundreds to
thousands or resources, and Desktop Grids have on the order
of tens to hundreds of thousands of resources. So the workload
size is reflective of the platform size.

The specific Grid and Desktop Grid workload parameters
that we use are based the BOINC Catalog [8] (Workload
W1), and Grid Workload Archive [9], [10] (Workload W2),
respectively (Table II).

Workload W1. In the BOINC Catalog [8], we find that the
median job deadline tdead is 9 days, and the mean task length
T is 4.6 hours (276 minutes) on a 2.5GHz core. This translates
to a mean per-instance workload Winst of 11.5 unit-hours. We
will assume in the following an instance type with 2.5 EC2
Compute Units (e.g. a single core of the High-CPU medium
instance type) [3] so that the task lengths remain around the
original values. We also learned that a typical value for nmax

is 20,000 tasks. Thus, we center the range of W , tdead, Winst

(or equivalently, of T) around these values. See Table II for
these and additional parameters.

Workload W2. From the Grid Workloads Archive [9], [10],
we find that the mean job deadline tdead is 1074 minutes
(17.9 hours), and the mean task length T is 164 minutes
(2.7 hours) on a 2.5GHz core. This gives us an average per-
instance workload Winst of 6.75 unit-hours. nmax is 50 tasks,
the highest average reported in [10]. We will again assume in

Table III
RANDOM VARIABLES (RVS) USED FOR MODELING

Notation Description
ET execution time of the job (clock time)
AT availability time (total time in-bid)
EP expected price, i.e. (cost per instance)/AT
M monetary cost AT · EP per instance
AR availability ratio AT/ET
UR utilization ratio T/ET

the following an instance type with 2.5 EC2 Compute Units
for a single core. This let us center our study around the values
of T and tdead as reported in the third row of Table II.

III. MODELING AND OPTIMIZATION APPROACH

A. Execution Scenario
Figure 2 illustrates an exemplary execution scenario. A user

submits a job with a total amount of work W of 12 unit-
hours with ninst = 2 which translates to a Winst = 6 unit-
hours and the task time (per instance) T of 6 hours (assuming
EC2’s “small instance” server). User’s bid price ub is 0.30
USD, and during the course of the job’s computation, the job
encounters a failure (i.e. an out-of-bid situation) between time
5 and 7. The total availability time was 8 hours, from which
the job has (4+2) = 6 hours of useful computation, and uses
1 hour for checkpointing and 1 hour for restart. (Obviously,
these overheads are unrealistic, but defined here for simplicity
of the example.) The clock time needed until finishing was
10 hours. During the job’s active execution, the spot price
fluctuates; there are 3 hours at 0.10 per time unit, 4 hours at
0.20 per time unit, and 1 time unit at 0.30 per time unit, giving
a total cost of 1.40. Thus the expected price is 1.40/8 = 0.175
(USD / hour).

B. Modeling of the Execution
The execution is modeled by the following random variables

(RVs):
• execution time ET is the total clock time needed to

process Winst on a given instance (or, equivalently, to
give the user T hours of useful computation on this
instance); in the example, ET assumes the value of 10
hours

• availability time AT is the total time in-bid; in our
example, this is 8 hours

• expected price EP is the total amount paid for this
instance to perform Winst divided by the total availability
time; note that always EP ≤ ub

• monetary cost M is the amount to be payed by the user
per instance, defined by M = AT · EP ; in the example,
we have (in USD) M = 8 · 0.175 = 1.40.

Note that as we assume ninst instances of the same type,
they all are simultaneously in-bid and out-of-bid; therefore,
the values of the variables ET , AT , EP are identical for
all instances deployed in parallel. In particular, the whole
job completes after time ET , and so ET is also the job’s
execution time. Furthermore, all the above RVs depend on

9

Decision Workflow

Submission with job
parameters, and time and

budget constraints
Broker applying
decision model

Feasible?

Yes, get bid to
achieve lowest cost
or execution time,

then deploy.

No, revise constraints

Amazon EC2
Spot Market

10

Decision Model
• For a random variable, X, we write X(y) for

x s.t. Pr (X < x) = y.

• E.g. ET(0.50) is the median execution time

• Feasibility decisions

• Deadline constraint achievable with confidence
cdead ⇔ tdead ≥ ET(cdead)

• Budget constraint achievable with confidence
cB ⇔ B ≥ M(cB)

• Among the feasible cases, we choose the one with the
smallest M(cB) or lowest execution time ET(cdead)

11

Outline

• System model

• Decision model

• Simulations method and results

• Relation with BOINC

• Conclusion & Future work

12

Simulation Method
• Determine distributions of model variables via price

trace-driven simulation

• Prices: trace of Spot instance prices obtained from
Amazon

• Workload model

• W1: “Big”, based on Volunteer Computing,
parameters derived from BOINC catalog

• W2: “Small”, based on Grids, parameters
derived from the Grid Workload Archive

Table I
USER PARAMETERS AND CONSTRAINTS

Notation Description
ninst number of instances that process the work in parallel
nmax upper bound on ninst

W total amount of work in the user’s job
Winst workload per instance (W/ninst)

T task length, time to process Winst on a specific instance
B budget per instance
cB user’s desired confidence in meeting budget B

tdead deadline on the user’s job
cdead desired confidence in meeting job’s deadline

ub user’s bid on a Spot Instance type
Itype EC2 instance type

Note that there is a potential exploitation method to reduce
the cost of the last partial hour of work called "Delayed
Termination" [6]. In this scenario, a user waits after finished
computation almost to the next hour-boundary for a possible
termination due to an out-of-bid situation. This potentially
prevents a payment for the computation in the last partial hour.

0.075

0.08

0.085

Price for eu−west−1.linux.c1.medium (11−18 March, 2010)

0.15

0.155

0.16

0.165

0.17

Price for eu−west−1.linux.m1.large (11−18 March, 2010)

0.038

0.039

0.04

0.041

0.042

Price for eu−west−1.linux.m1.small (11−18 March, 2010)

Figure 1. Price history for some Spot Instance types (in USD per hour;
geographic zone eu-west; operating system Linux/UNIX)

B. Workloads and SLA Constraints

We assume a user is submitting a compute-intensive, em-
barrassingly parallel job that is divisible. Divisible workloads,
such video encoding and biological sequence search (BLAST,
for example), are an important class of application prevalent
in high-performance parallel computing [7]. We believe this
is a common type of application that could be submitted on
EC2 and amenable to failure-prone Spot Instances.

The job consists of a total amount of work W to be
executed by ninst many instances (of the same type) in
parallel, which yields Winst = W/ninst, the workload per

Table II
PARAMETERS OF THE EXEMPLARY WORKLOADS

Workload Itype nmax Winst T tdead cdead

W1 2.5GHz 20, 000 11.5 4.6h 9d 0.9
W2 2.5GHz 50 6.83 2.7h 17.9h 0.8

instance. Note that ninst can be usually varied up to a certain
limit given by the number nmax of “atomic” tasks in the
job; thus, ninst ≤ nmax. We measure W and Winst in
hours of computation needed on a single EC2 instance with
processing capacity of one EC2 Compute Unit (or simply
unit), i.e. equivalent CPU capacity of a 1 . . . 1.2 GHz 2007
Opteron or 2007 Xeon processor [4]. We refer to amount of
work done in one hour on a machine with one EC2 Compute
Unit as unit-hour. We call the time needed for processing
Winst on a specific instance type Itype the task length T =
T (Itype). Simplifying slightly, we assume the perfect relation-
ship T (Itype) = Winst/(processing capacity of Itype). Note
that T is the “net” computation time excluding any overheads
due to resource unavailability, checkpointing and recovery.
This is different than the actual clock time needed to process
Winst(called execution time, see Section III-A), which is at
least T .

Further constraints which might be specified as part of user’s
input are:

• budget B, upper bound on the total monetary cost per
instance

• cB : user’s desired confidence in meeting this budget
• deadline tdead, upper bound on the execution time (clock

time needed to process Winst)
• cdead: the desired confidence in meeting tdead.

Table I lists the introduced symbols.

C. Optimization Objectives

We assume that a user is primarily interested in answering
the following questions:

Q1. Can the job be executed under specified budget and
deadline constraints?

Q2. What is the bid price and instance type that mini-
mizes the total monetary costs?

Q3. What is the distribution of the monetary cost and the
execution time for a specific instance type and bid
price?

To simplify our approach, we assume that the instance type
and the bid price are fixed, and focus on answering Q3. In
order to answer Q1 and Q2, one needs just to evaluate a
small number of relevant combinations of instance types and
bid prices (see Section IV-E). The user can also apply this
approach dynamically, i.e. periodically re-optimize the bid and
instance type selection during the computation, depending on
the execution progress and changes in spot prices.

D. Exemplary Workloads

To emulate real applications, we base the input workload
on that observed in real Grids and Desktop Grids. The ma-
jority of workloads in traditional Grids consist of pleasantly

13

Figure 7. CDF of execution time (ET , left) and monetary cost (M , right) for various task lengths on instance type A (workload W1)

The “typical” price range [“Low Bid”, “High Bid”] has been
determined on the price history from Jan. 11, 2010 to March
18, 2010; we plotted this history (as in Figure 1), removed
obviously anomalous prices (high peaks or long intervals of
constant prices), and took the minimum L (“Low Bid”) and
maximum H (“High Bid”). The last column (“Ratio in %”)
shows (H − L)/L ∗ 100 per instance type, i.e. the range of
bid prices divided by “Low Bid” (in %). This answers the first
question: the variation of the typical bid prices is only about
10% to 12% accross all instance types.

In Table VII, column “Low / Unit” shows the “Low Bid”
price divided by the total number of EC2 Computing Units
(units) of this instance type. The column “High / Unit” is

computed analogously. For workload types assumed here, this
allows one to estimate the cost of processing one unit-hour (in
US-cent) disregarding the checkpointing and failure/recovery
overheads. Obviously, instance types within the high-CPU
class [4] have lowest cost of unit-hour - only about 40%
of the standard class. For the high-memory instance types a
user has to pay a small premium - approx. 8% more than for
the standard class. Interestingly, all instance types within each
class have almost identical cost of one unit-hour. In summary,
switching to a high-CPU class (if amenable to the workload
type) can reduce the cost of unit-hour by approx. 60% while
bidding low saves only 10% of the cost, with a potentially
extreme increase of the execution time.

Distribution of Execution Time and Costs
(Instance Type A and Workload W1)

tdead, cdead: high-pass filter
B, cB: low-pass filter

0.076
0.078

0.08
0.082

0.084

2.6
7.6

12.6
17.6

22.6
0

0.2

0.4

0.6

0.8

1

Bid priceTask length T (hours)

A
va

ila
bi

lit
y

ra
tio

 A
R

(0
.5

0)

0.076
0.078

0.08
0.082

0.084

2.6
7.6

12.6
17.6

22.6
0

0.2

0.4

0.6

0.8

1

Bid priceTask length T (hours)

A
va

ila
bi

lit
y

ra
tio

 A
R

(0
.9

5)

Figure 5. Availability ratio AR(p) for p = 0.5 (median) (left) and for p = 0.9 (right) depending on the bid price and the task length T

Figure 8. The ranges of the bid prices according to the results in Figure 7

Table V
THE LOWEST MONETARY COSTS (USD) IN CASE OF FIGURE 9 FOR

DIFFERENT VALUES OF cdead AND BID PRICE ub

bid = 0.076 bid = 0.077 bid = 0.078 bid = 0.079
cdead OPT H(our) OPT H OPT H OPT H
0.99 - - - - 0.39 0.39 0.39 0.39
0.90 - - 0.38 0.38 0.39 0.39 0.39 0.39
0.82 0.30 0.38 0.38 0.38 0.39 0.39 0.39 0.39

D. Meeting Deadline and Budgetary Constraints for W2

In this section we present a study according to the param-
eters for the workload W2. Figure 10 shows the CDF of the
total execution time and the total monetary costs per instance
according to each bid price, checkpointing strategy, and the
task time T . To compensate that the deadline (cdead = 1074
minutes) is much smaller than the deadline for workload W1,
the confidence cdead of meeting tdead is assumed to be lower.

Table VI shows the lowest execution time derived from
Figure 10 according to the different budget B and the confi-
dence cB values. We find that a slight change of the budgetary
confidence cB has significant impact on the execution time. In
addition, there is a significant cut-off on the total budget. If
the user assumes 0.01 USD more for the budget B, she will

Table VI
THE LOWEST EXECUTION TIME (MINUTES) ACCORDING TO FIGURE 10

FOR DIFFERENT VALUES OF B AND cB

Budget per instance B (USD)
cb ≤ 0.22 0.23 ≥ 0.24

OPT H(our) OPT H OPT H
0.90 - - 1080 1140 180 180
0.80 - - 840 900 180 180
0.70 - - 660 720 180 180
0.60 - - 180 180 180 180
0.50 - - 180 180 180 180

Table VII
BIDING PRICE COMPARISON ACROSS INSTANCE TYPES (IN US-CENTS)

Symbol Class Total Low High Low / High / Ratio
Units Bid Bid Unit Unit in %

A hi-cpu 5 7.6 8.4 1.52 1.68 10.5
B hi-cpu 20 30.4 33.6 1.52 1.68 10.5
C std 1 3.77 4.2 3.77 4.2 11.4
D std 4 15 16.8 3.75 4.2 12.0
E std 8 30.4 33.6 3.8 4.2 10.5
F hi-mem 13 53.3 58.8 4.1 4.52 10.3
G hi-mem 26 106 118 4.08 4.54 11.3

benefit from a significant reduction of execution time at the
same confidence value.

We also found that there is a big difference on the monetary
costs between this case (T = 164 minutes) and a simulation
for T = 184 minutes (not shown). This is explained by the fact
that monetary cost is highly depending on Amazon’s pricing
policy, because the granularity of calculating price is an hour,
and thus, if we exceed the hour-boundary we need to pay the
last partial hour.

E. Comparing Instance Types

Table VII attempts to answer two questions: what is the
variation of the typical bid prices per instance type? (i.e.
how much can we save by bidding low compared to bidding
high?) and how much can we save by changing the instance
type? The first three columns are the same as in Table IV.

bid

Pr (ET<= 4800m) = 0.90
with bid of 0.082

Pr (M <= 0.38) = 0.90
with bid of 0.076

14

Relation to BOINC?
• Amazon does not provide any middleware for

Spot instances

• BOINC is ideal as it handles nondeterministic
failures, and ongoing work with VM integration
would allow transparent checkpointing

• Use BOINC with decision model to be cost-
aware

• Cloud-enabled BOINC client or server?

• Integrate with volunteers on the Internet,
Grids etc?

15

Why not just use Internet volunteers?

• Reliability of Spot Instances is tunable (at a cost)

• Greater inter-node connectivity + higher
bandwidth

• ~1Gbit among EC2 instances*.

• ~100Mbit down/55Mbit up between EC2 and
S3*

• Scientific data can be hosted on Amazon for
free

16

* http://blog.rightscale.com/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/

http://blog.rightscale.com/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/
http://blog.rightscale.com/2007/10/28/network-performance-within-amazon-ec2-and-to-amazon-s3/

Hybrid Use Case

• Scientist submit 10,000 jobs

• Last 7%* are stragglers and delay job completion

• Run last 700 jobs on Amazon Spot Instances in
parallel all at once

• Spot instance cost: ~$210 ± $20

• Could be cheaper if use reliable host
mechanism

• Tune reliability according to budget and time
constraints of user

17
* Personal communication with Kevin Reed

Implementation
Approach*

• Distinguish BOINC cloud nodes

• Create accounts with special id

• Schedule on cloud nodes

• Use matchmaking function is_wu_feasible_custom?

• Prioritize work units later in batch

• Use feeder to prioritize by result_id or priority

18
* Thanks to David Anderson

Discussion Questions

• Would application scientists use hybrid
volunteer computing / cloud platforms?

• Accounting model?

• Would volunteers use cloud platforms?

• Would hybrid system allow for new types of
applications in terms of data intensity or
message passing?

19

Plug

• EU project

• European Desktop grid Initiative (EDGI)

• Open 2-year post-doc in Lyon

20

Thank you

21

