

The 6th Annual Pangalactic

BOINC Workshop

BOINC: The Year in Review

David Anderson

31 Aug 2010

Credit: goals

Device neutrality: a job should get the same
credit no matter what device processes

Project neutrality: a computer should get the
same credit/day regardless of what project(s) it
runs

(easy to show that these can’t both be achieved)

1st credit system

● CPU time x CPU benchmark

● not device neutral

● Replication and credit averaging

● granted credit depends on partner

2nd credit system

� “Actual FLOPS”-based

� APIs for reporting FLOP counts

� SETI@home publishes average credit/CPU
sec, other projects scale to match

� Problems:

� most apps can’t count FLOPs

� doesn’t address GPUs

� no device neutrality

� doesn’t prevent cheating w/ single replication

Philosophy of 3rd system

� Credits is based on peak FLOP count (PFC)

� PFC(J) = #CPUs * CPU benchmark

 + #GPUs * GPU rated FLOPS

� Reflects “opportunity cost”, not actual work

� Normalize in 2 ways

Statistics

� Maintain mean, variance of

 PFC(J) / WU.fpops_est

� for each:

� app

� app version

� (host, app version)

Normalize to most efficient app
version

CPU/Win

mean PFC

CPU/Mac

CPU/Linux

GPU/Win

Note: this provides device neutrality at the expense
of project neutrality

Host normalization

� Scale PFC for version V, host H by

 V.pfc_avg / H.pfc_avg

� Provides cheat-resistance even with single
replication

� but need to prevent cherry-picking: don’t use
host normalization unless host has returned N
consecutive valid results

GPU-only projects

� On a project with both CPU and GPU versions,
version normalization provides a measure of
relative efficiency CPU vs. GPU

� Projects with only GPU apps don’t have this

� Solution: such projects scale by the weighted
averages of projects that do

Experience

● New system tested in SETI@home

● Works, but need to double credit (redefine
Cobblestone)

● No project customization

Job runtime estimation

� Old system:

 R(est) = WU.fpops_est / CPU benchmark

� Maintain and scale by a project-wide “duration
correction factor”

� Problems:

� bad if multiple versions

� scientists shouldn’t think about FLOPS

� doesn’t work for GPUs

New system

● Maintain mean, variance of normalized elapsed
time for each (host, app version)

● Predicted runtime = mean * WU.fpops_est

(per-app-version duration correction factor)

Other per-(host, app version) items

● Daily quota (for host punishment)

● Consecutive valid results: replaces error rate for

● “reliable” mechanism

● cherry-picking prevention

Notice system

● How does the BOINC client software
communicate with volunteers? Currently: the
Messages Tab. Problems:

● Requires user to look

● Non-prescriptive techno-babble

● Only bad news

● Only text

● Non-translatable

Notices architecture

● Multiple “notice” sources

● from client

● from schedulers

● RSS feeds from projects

– project news

– private messages

– friend requests

– messages in subscribed threads

– ...

Notice delivery

● System tray popup

● Notices tab

GPU support

● Exclusive apps

● Show GPU projects in attach wizard

● Snooze/suspend/resume GPU

● app_plan(): specify GPU RAM requirements

● use in scheduling; boinc_temporary_exit()

● Sample CUDA/OpenCL apps

● Support Fermi GPUs

Multithread app support

● boinc_init_parallel()

● suspend/resume multiple threads

● show projects in attach wizard

Other goodies

● GUI RPC as HTTP

● enable GUIs based on web technologies

● Web: project news as a message board

● easier to post

● users can discuss

● Preferences

● Transfer at most X MB every N days

● suspend if non-BOINC CPU load exceeds X

More goodies

● Stuff for Intel PtP

● web-based registration (manager finds cookie)

● HTTP proxy autodetect

● Server logging

● <debug_xxx> flags instead of -d 3

● -d 4 means print DB queries

Upcoming

● Rewrite or replacement of Simple View

● or entire Manager?

● VM app support

● BOINC installer includes VirtualBox?

● Volpex

● IPC for BOINC apps

● virtual cluster

● Integration with Drupal

What we didn’t do

● Integrate remote job submission system from
GPUGRID

● Accelerated batch completion

Adoption by scientists

● Single-scientist projects: a dead end

● Barriers to entry are too high

● Wrong marketing model

● Doesn’t handle sporadic requirements

Adoption by scientists

● Most scientists outsource HPC decisions to IT
people

● IT people fear and loathe volunteer computing

Napoleon: Volunteer computing just can’t handle the kinds of jobs
that real scientists run.

Me: What precisely is different about these jobs?

Napoleon: THEY’RE JUST DIFFERENT, THAT’S ALL

A way forward

Distinguish:

● Project operation

● operate servers

● port apps, interface with scientists

● Marketing

● branding/strategy

● mass media, online, non-traditional

● web development

● make bundling deals with computer/OS vendors

Project == existing HPC provider

● Supercomputer centers

● National grids (Teragrid, OSG)

● Hubs

● “Facebook + iPhone app store” for science area

● e.g. Nanohub

● HUBzero/BOINC integration proposal

ScienceUSA.org

● A consortium of funding agencies and HPC
providers

● Unified brand, web site for scientific volunteer
computing in U.S.; implemented using account
manager mechanism

● Volunteers choose research areas, not projects

● Committee of consortium members allocates
computing power among projects

● How to realize this?

● European/Asian counterparts?

Summary

● Volunteer computing has not approached its
potential

● There are still many skeptics

● Let’s keep working

