

The BOINC Community

UC Berkeley
developers (2.5)

Projects PC volunteers
(240,000)

Other volunteers:
testing

translation
support

Computer
scientists

Workshop goals

● Learn what everyone else is doing
● Form collaborations
● Get ideas
● Steer BOINC development

Hackfest (Thu/Fri)

● Goal: get something done

– design and/or implement software

– improve docs

– learn and use a new feature

● Bring your ideas

The state of volunteer computing

● Volunteership: stagnant
– 240K people (down from 290K)
– 350K computers

● Science projects: stagnant
● Computer Science research: a little
● Let’s keep trying anyway

Requests to projects

● Do public outreach
– Notices (with pictures)
– Automated reminder emails
– News emails
– Message boards
– Mass media

● Use current server code
– Avoid code divergence

To developers/researchers

● Talk with me before starting anything

– especially if it’s of general utility

● Let me know if you need data

What’s new in BOINC?

● Funding

● Integration projects

● Remote job and file management

● Android

● Scheduler

● GPU and multicore apps

● Client

● Plans

Funding

● Current NSF grant runs another 18 months

● Not clear if current model will continue

● Collaborations are important for future funding

● Projects may need to help fund BOINC directly

Integration projects

● HTCondor (U. of Wisconsin)

– Goal: BOINC-based back end for Open Science Grid or

any Condor pool

BOINC
server

Condor node

Grid manager

BOINC GAHP

Remote operations

Integration projects

● HUBzero (Purdue U.)

– Goal: BOINC-based back end for science portals such as

nanoHUB

BOINC
server

Hub

Integration projects

● Texas Advanced Computing Center (TACC)

– Android/iOS app

– They supply

● Interfaces, visualization, support for scientists

● Storage

● BOINC server

Remote input file management

● Issues

– Naming/immutability

– Efficiency

– Garbage collection

● User file sandbox (web-based) used by CAS

Content-based file management

● Server file names based on MD5

● DB table for file/batch association; garbage

collection

● Web RPCs to query lists of files, upload files

BOINC server Submit host

Jf_ec3056e9ed14c837e3e68c80bb14871f

Jf_dac0160fd3d7f910bae550ec26a164a8

Submit host

Input.dat

Input.dat

Foo.dat

Remote job submission

● Web RPCs

– Batch: estimate, create, query, abort, retire

– Batch expire time

– Job: query, abort

– App: get templates

● Input file modes

– Local, local-staged, semilocal, remote, inline

● C++, PHP bindings

Output retrieval

● Web RPCs to

– Get specific output files

– Get zip of job’s outputs

– Get zip of batch’s outputs

BOINC on Android

● New GUI

● Battery-related issues

● Device naming

● Released July 22

– Google Play Store, Amazon App Store

– ~30K active devices

Job size matching

● Problem: 1000X speed difference GPU vs Android

● An app can have jobs of N “size classes”

● “size_census.php”: computes quantiles of effective

speed for each app

● Scheduler tries to send jobs of size class i to devices

in quantile i

● “size regulator” makes sure jobs of all size classes

are available to send

New score-based scheduler

for each resource type (starting w/ GPUs)

 scan job array starting at random point

 make list of jobs with app version for resource

 assign score (include job-size term)

 sort list

 for each job in list

 do quick checks

 lock array entry, do slow checks

 send job

 if request satisfied, break

BOINC client

● New work-fetch, job scheduling

– Handle GPU exclusions

● “App config” mechanism

– User can set device usage parameters, limit # of

concurrent jobs per app

● Maintain/report current, previous uptime

● Maintain list of completed jobs

● Sub-second CPU throttling

GPU and multicore apps

● Support Intel GPUs

● Support OpenCL CPU apps

– Detect, advertise multiple OpenCL libraries

● Develop OpenCL example app

● Detect GPUs in a separate process

– Mac notebooks: allow system to use low-power GPU

BOINC runtime system

● Replace heartbeat with PID check

– Not on Win2K: PID reuse

● Support apps that are in a critical section most of the

time (e.g. GPU apps)

Volunteer storage

● Finished data archival system

– Store large files for long periods

– Multi-level erasure coding

● Developed simulator for testing, performance study

Software engineering

● Finished SVN → git migration

● Automated translation process

– build_po → Pootle → commit → deploy

● Code hardening

– strcpy() → strlcpy()

– MAXPATHLEN

Didn’t start

● OpenID/OpenAuth support

● Remodel computing preferences

● BOINC in app stores (Windows, Apple)

Planned

● Automated build/test using Jenkins

– Server code release management

● Accelerated batch completion

● Apple iOS client

My wish list: new GPU design

● Current: all GPUs of a given vendor are equivalent

– Scheduler requests ask for NVIDIA jobs, not jobs for a

specific NVIDIA GPU

– This doesn’t work well for machines with heterogeneous

GPUS

– Work-arounds (GPU exclusions) cause problems

● Proposed: treat each GPU as a separate resource

My wish list: fully embrace latency-
oriented scheduling

● Types of workload

– Throughput-oriented

– Small/fast batches

– Large/slow batches

● Suppose a project has all three?

– Goal: client requests and processes short jobs even if fast

jobs are in progress

– Requires complete redesign of scheduling policies

Science@home

● The “project ecosystem” hasn’t materialized

– Creating a project is too difficult, too risky

– Volunteers tend to be passive

– Marketing and PR: too many brands

● Umbrella projects: good, but not enough

Science@home

● Single “brand” for volunteer computing

● Register for science areas rather than projects

● Facebook/Google login

● Use account-manager architecture

● How to allocate computing power?

– Involve the HPC, scientific funding communities

