BOINC Workshop

Grenoble, Sept 25th 2013

Peter Hanappe Sony Computer Science Laboratory Paris

- 1. Collect estimates & models on cost & energy consumption
- 2. Measuring the energy consumption
- 3. Reducing the energy consumption
- 4. ... something else

1. Collect estimates & models on cost & energy consumption

Wiki: http://low-energy-boinc.cslparis.fr/info

2. Measuring the energy consumption

sensors

Energy

Temperature

Power usage P-state **CPU** load CPU load of BOINC applications **Progress of BOINC workunits** CPU load of user applications Ambient temperature User absent or not Fan speed **CPU** temperature Other

+
CPU benchmark
BOINC CPU% Setting

BOINC power = total power

- power used for other activities

- reusable heat

total power = F(P-state)

power used for other activities = F(user present, CPU load other applications)

3. Reducing the energy consumption

Run the computation at night

Run the computation during work

Run the computation during work in low-power mode

Windows driver

We hired Matthew Sykes for two months. Matthew has 15 year experience in Windows driver development.

- 1. The driver creates a kernel thread that jumps to each CPU once every N ms (configurable).
- 2. The thread gathers statistics about the time spent in each CPU performance state (similar to Linux).
- 3. The thread can maintain a CPU in a given Pstate.
- 4. A user-space API allows to talk to the driver.

4. ... something else

Suggested project:

100% renewable energy source

2-5 W

Always-on home server:

- 0% energy requirements
- personal file & email server
- runs BOINC

Raspberry Pi:

Whetstone benchmark: 270

Power consumption: 2W

Price: 31 € (37 € with power adaptor)

Performance/power: 270/2 = 135

Performance/cost: 270/37 = 7.3

Laptop Core2 Duo 2.4 GHz, 2 threads:

Whetstone benchmark: 4270

Power consumption: 48 W

Price: 1000 €

Performance/power: 4270/48 = 89

Performance/cost: 4270/1000 = 4.27

Microbial Fuel Cells

Biogas

Link with our P2P Food Lab project?

