

computational Biology
project for
GEne Networks Expansion
on a
Distributed Platform

@ The 10th BOINC Workshop Budapest, 29 Sep 2014

Who we are

Enrico Blanzieri

Claudio Moser and the Gene Function Group

Valter Cavecchia

Paolo Morettin, Nadir Sella, Thomas Tollio and all the students of the Laboratory of Biological Data Mining class, UniTN, 2013-2014

Testing hardware partially provided by CNR-ISTC-LOA, Trento

Biological background

Gene

A gene is a piece of DNA which contains the information to create a specific protein

The **genome** is the whole set of genes of a specific organism

Challenge

We want to discover **new relations** between genes (expansion)

Genes on the same local gene network are correlated

Method

We compare the expression levels of two different genes

Relations between genes become correlations when their expression levels have a similar trend

Method

We use the PC-algorithm to find causal relationships among genes, exploiting their expression levels in different samples

Correlations (linear) between genes are computed using Pearson coefficient

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

Problem

Genomes and gene networks are **huge**

We want to expand many local gene networks of several organisms

This work is **hard** and computationally **heavy**

Model

Arabidopsis thaliana

the model plant ~23.000 genes ~264.500.000 possible relations

Implementation

1

Running the PC-algorithm on the whole genome is heavy. So we use PC-IM to iteratively run it on genome portions

Algorithm 1: Skeleton

```
Graph G \leftarrow complete undirected graph; l \leftarrow -1; while l < |G| do |l \leftarrow l+1; foreach \exists u, v \in G \ s.t. \ |Adj(u) \setminus \{v\}| \ge l do | if v \in Adj(u) then | foreach k \subseteq Adj(u) \setminus \{v\} \ s.t. \ |k| = l do | if u, v are conditionally independent given k then | remove edge \{u, v\} from G;
```

We implemented an efficient version of the PC-algorithm, named PC++

PC-IM

Implementation

We need a lot of computational power

We use **BOINC**, an open source framework for Volunteer Grid Computing.

Thanks to the help of volunteers, we reached the computational power of a supercomputer

Implementation

R C++ (Dynamic Programming, Adjacency Matrix)

$$\rho_{i,j|k} = \frac{\rho_{i,j|k\backslash h} - \rho_{i,h|k\backslash h}\rho_{j,h|k\backslash h}}{\sqrt{(1 - \rho_{i,h|k\backslash h}^2)(1 - \rho_{j,h|k\backslash h}^2)}} \quad O(3^{\mathsf{I}})$$

```
Algorithm 2: Correlation

function Dynamic correlation (int l, matrix \rho)

dim \leftarrow l + 2;
for k = 1 to l do

for i = 0 to l - k do

for <math>j = i + 1 to dim - k do

\rho[i][j] = \rho[j][i] = \frac{\rho[i][j] - \rho[i][dim - k] * \rho[j][dim - k]}{\sqrt{(1 - \rho^2[i][dim - k]) * (1 - \rho^2[j][dim - k], 2)}};

return \rho[0][1];
```


Boinc integration

BOINC API

Checkpoints

Running time estimates

• 20m-20h runtime

Memory, network and storage

- Implementation focused to minimize RAM usage and bandwidth
- gzip file transfer, sticky files

Multi-platform porting issues

• erf() function etc... (MS VisualC++ vs g++)

Supported Operating Systems

- Windows (x32/x64) from XP
- Mac OS X (CPU Intel, x64) version >= 10.5
- GNU/Linux (x32/x64) from kernel 3.x

Recommended Boinc client version: 7.0+

Boinc integration

Validation

- Simple bitwise (gzip version) validator
- Simple redundancy with min quorum = 2

Work Generator

• Python scripts (may be improved)

Scheduler

• Standard (was using homogeneous redundancy)

Approach

- Alpha stage (internal)
- Beta stage (with invitation code, per request)

Issues (to-do list)

- Upgrade server (now virtual, with limited resources)
- Automation of post-processing phase
- Web (easy) access to job generation
- GPGPU version? (PC*)

URL

http://gene.disi.unitn.it/test/index.php

Boinc results

Users

• ~150 with ~550 hosts

74229 results

'Over' results

'Success' results

'Client error' results

Client state	# results
Downloading	0
Processing	0
Compute error	34
Uploading	0
Done	0
Aborted by user	752

Experiments

Organism

- Arabidopsis Thaliana Gene Expression Data
- 393 hybridization experiments

Local Gene Network

- Flower Organ Specification Gene Regulatory Network (FOS)
- · 15 genes linked by 54 causal relationships

Experiments

- Precision
- Performance benchmark against competitors
- Sensitivity to algorithm parameters:
 - t tile size
 - i iterations
 - α significance level
- Post-processing (k) genes to be considered in the output list

Example (experiment 1, precision)

• (α = 0.05) (t = 50; 100; 250; 500; 750; 1000; 1250; 1500; 1750; 2000) (i = 20; 50; 100; 250; 500; 1000; 1500; 2000)

Example (experiment 6, sensitivity)

- "Leave one out" (14 genes out of 15)
- $(\alpha = 0.01, 0.05)$ (t = 1000, 2000, 3000, 4000) (I = 100, 2000).

Scientific results

Precision

Experiment 1 $\alpha = 0.05$ top 10 results (k)

Future work

Other organisms, other LGNs, focus on 'regional' agriculture

- Escherichia coli (bacteria)
- Saccharomyces cerevisiae (yeast)
- Vitis vinifera (grapevine)
- Malus domestica (apple)
- Homo sapiens (human)
- Drosophila suzuki (fruitfly)

תודה Dankie Gracias Спасибо Köszönjük Grazie Dziękujemy Dėkojame Vielen Dank Paldies os Täname teid 油油 Dakujeme Kiitos 感謝您 **Obrigado** Teşekkür Ederiz 감사합니다 Σας Ευχαριστούμ Bedankt Děkujeme vám ありがとうございます Tack

Questions are welcome

