

Continuous Integration Tools for BOINC

Christian Beer
Rechenkraft.net e.V. (non-profit)

Goals of CI Tools

● Overview of code quality

● Automated testing as part of quality assurance

● Help developers and reviewers

● Increase code quality

● Avoid unintentional side effects of code changes

● Automated builds and tests are run for every pull request and
merge into master branch

Current status

● AppVeyor

● Windows based builds

● Stores build artifacts

● Travis CI

● Linux/Mac based builds

● Extensive support for CI
Tools (Testing, Coverage)

Examples - github

Examples – Travis CI

Examples - AppVeyor

Current status

● Coverity Scan

● C / C++ static code analysis

● Integrated through Travis

● Triggered manually

● Scrutinizer CI

● PHP / python / JavaScript
static code analysis

● Needs tweaking for better
results

Examples – Scrutinizer CI

Examples – Coverity Scan

Examples – Coverity Scan

Current status

● Only limited code quality metrics available

● Only fatal build breaks are detected

● Results of static code analyzers are ignored

● Passing tests is not mandatory

● No automated (Unit / Integration) testing is done

Additional tools

● boinc-server-test

● Integration testing for server
components

● Based on docker container
provided by Marius

● Refined for testing by Kevin

● googletest

● Unit testing framework for
C / C++

● PoC done by Keith

● uses/needs cmake

● Both can be integrated with Travis CI

● Immediate response on pull request quality

● Better quality control

Challenges and Solutions

● No maintainer for the BOINC autotools scripts

● Scripts are barely working and contain lots of
workarounds needed in the past

● New tools are using cmake instead of autotools

● Switch to cmake and leave old code behind

● More potential cmake maintainers available

Short cmake introduction

● Versatile cross-platform system to generate native build
files

● Generates Makefile’s (replaces autoconf / automake)

● Auto-detecting dependencies

● Auto-detecting capabilities (generate config.h)

● Can generate Xcode projects

● Can generate Visual Studio project file

● Users: Netflix, KDE, cURL, MariaDB

Conclusion

● BOINC already has lots of tools for better code quality

● We just need to use them more

● Having a good test infrastructure makes it easier to add
big changes

● Autotools worked fine for the last 15 years, let’s switch to
cmake to be save for the next 15

● Please help triage and fix defects found by static analyzers

● Do we need to promote CI tools better?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

